
UCRL-JRNL-216320

Hydrogenic and Screened
Self-Energies for d-States

J. Sapirstein, K. T. Cheng

October 19, 2005

Physical Review A



Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 
 



Version 2.0

Hydrogenic and screened self-energies for d-states

J. Sapirstein∗

Department of Physics, University of Notre Dame, Notre Dame, IN 46556

K.T. Cheng†

University of California, Lawrence Livermore National Laboratory, Livermore, CA 94550

(Dated: October 17, 2005)

Abstract

The one-loop self-energy is evaluated for d3/2 and d5/2 states in hydrogenic ions, and good

agreement found with previous calculations. Results are compared to what is known of the Zα

expansion and higher-order binding corrections inferred for these states as well as for their fine

structures. Screened Kohn-Sham potentials are then used to evaluate the one-loop self-energy

corrections to n = 2 states of lithiumlike ions for Z = 10 − 100, n = 3 states of sodiumlike ions

for Z = 20 − 100, and n = 4 states of copperlike ions for Z = 40 − 100. The importance of these

screened calculations for the interpretation of recent high accuracy experiments is emphasized.
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I. INTRODUCTION

The one-loop self-energy has been extensively studied both as an expansion in Zα and

ln(Zα) and in an exact manner using various numerical techniques: a useful review of the

theory has been given by Mohr in Ref. [1]. The numerical approach, starting with the basic

idea of Brown, Langer and Schaefer [2] in the late 50’s, was first correctly implemented in the

calculations of Desiderio and Johnson [3] in the early 70’s. A different, and more accurate,

numerical approach was developed by Mohr [4] for hydrogenic ions at around the same

time. Exploiting the analytic control available when the Dirac-Coulomb Green’s function

is expressed in terms of Whittaker functions, Mohr and collaborators have systematically

increased the accuracy of their method, which applies primarily to one-electron atoms with

a point nucleus [5, 6], but has been extended to the case of a finite nucleus modeled as either

a shell or uniform distribution of charge [7]. The method of Brown et al. [2], however, can be

applied to any local central potential, and a number of groups have developed methods to

calculate self-energies in potentials more appropriate to many-electron atoms, with greater

accuracy afforded by further subtractions of the electron propagator [8], as will be described

in more detail below. In this paper, we will describe extensions of a method that we have

developed in collaboration with Johnson [9]. Other groups have also treated the problem of

self-energies in many-electron systems. We note in particular calculations carried out around

the same time as our earlier work by Blundell and Snyderman [10] and the Göteborg group

[11], and more recent computational methods developed by Shabaev and Yerokhin [12] and

Goidenko et al. [13].

It is the purpose of this paper to first briefly describe the method of Ref. [9], which

has significantly been improved in accuracy since its first introduction. We then apply the

method to calculations of the self-energy for point-Coulomb hydrogenic ions in the nd3/2

and nd5/2 states with n = 3 and 4, with the purpose of comparing with earlier work and

making a comparison with the Zα expansion, particularly for the fine structure of these

states. Since experiments on highly-charged, many-electron ions are producing more and

more high-precision spectroscopic data, we also present tables of self-energy contributions

in realistic local potentials for n=2 lithiumlike, n=3 sodiumlike and n=4 copperlike ions,

including ns and np states in addition to nd states for completeness.

In the next section, improvements in our method for calculating the one-loop self-energy
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are described. In the following section, 3d and 4d results for hydrogenic systems are presented

and compared with those from the Zα expansion. Screened results using Kohn-Sham model

potentials are presented in the next section, and the role of the present calculation for the

interpretation of a recent high-accuracy experiment in copperlike ions [14] is discussed in

the conclusion.

II. CALCULATIONAL SCHEME

Because the method used to evaluate the self-energy has been given in some detail in

Ref. [9], we describe it here only schematically. The basic idea is to rewrite the electron

propagator in an arbitrary local central potential V (r) as

SF = (SF − S0 − S0V S0) + (S0 + S0V S0) ≡ S main
F + S pspace

F , (1)

where S0 is the free electron propagator. Specifically

S main
F (�x, �y; E) = SF (�x, �y; E) − S0(�x, �y; E) −

∫
d 3r S0(�x, �r; E)V (r)S0(�r, �y; E) (2)

and

S pspace
F = S0(�x, �y; E) +

∫
d 3r S0(�x, �r; E)V (r)S0(�r, �y; E). (3)

When the electron propagator in the dimensionally regularized self-energy of state v

Σvv = −ie2
∫

d 3x
∫

d 3y
∫ dnk

(2π)n

ei�k·(�x−�y)

k2 + iδ
ψ̄v(�x)γµSF (�x, �y; εv − k0)γ

µψv(�y) (4)

is replaced with S main
F , an ultraviolet finite expression is encountered that can be evaluated

in coordinate space after partial wave expansions of the propagators are made. Mathemati-

cally, this is equivalent to the direct evaluation of the ultraviolet finite “two-potential” term

Σvv(S0V SF V S0), the last term in the expansion of the electron self-energy in an external

potential V shown in Fig. 1, an approach first proposed by Snyderman [8].

The bound and free propagators can be formed from combinations of solutions of the

Dirac equation regular at either the origin or infinity [15]. Here, radial functions of these

solutions are obtained numerically, partial wave by partial wave, using an Adams predictor-

corrector method modified to handle high angular momentum states l and high photon

energies ω = k0. This numerical approach works for any local potential, including V (r) =

−Zα/r for point-Coulomb potentials and, in particular, V (r) = 0 so that the free propagator
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S0 is evaluated in exactly the same way as the bound propagator SF , greatly simplifying

the numerical calculations. While significant cancellation takes place between the three

components of S main
F , present computer capability allows the use of extremely fine radial

grids with 5,000 to 50,000 points, which leads to control of the calculation to high partial

waves, typically up to l=50 without any problem. An advantage of being able to calculate

high-l terms directly is the fact that in some cases the 1/l3 asymptotic behavior of the

partial wave series is not reached at lower values. This happens when the partial wave series

converges very slowly, as is usually the case for low-Z ions or for the valence states of near

neutral atoms, or when a sign change of the series occurs at intermediate-l values. Once

the series is close to its asymptotic limit, contributions from higher-l partial waves can be

obtained by extrapolation with accelerated convergence methods to achieve higher accuracy.

While under good control in general, the high-l behavior is still the ultimate limit of the

accuracy of this method. However, this problem is greatly ameliorated when fine structure

is considered, as the difficult high-l terms cancel substantially. We will exploit this fact

when treating hydrogenic d-states, where we will be able to provide answers for the fine

structure an order of magnitude more accurate than for the individual states. We note that

high-l partial waves of bound states with the same principal quantum number n also largely

cancel, making self-energy corrections to intra-shell (∆n = 0) transitions significantly easier

to calculate than self-energies of individual states, an effect noted in Ref. [16]

When the Wick rotation k0 → iω is carried out, poles are passed that are easily evaluated.

However, the small-ω region of the integral can suffer from numerical instabilities associated

with the fact that the energy of the bound electron propagator E = εv − iω is very close

to the eigenenergy of the bound state εv. The source of the problem is that for the partial

wave with angular quantum number κ = κv, the two independent solutions of the Dirac

equation with E = εv − iω regular at the origin and at infinity, which are used to form the

electron Green’s function as mentioned earlier, are now both very close to the eigenfunction

of the bound state v, resulting in severe numerical cancellation and rapid loss of accuracy as

ω → 0. This problem can be eliminated by introducing a regulator δ through εv → (1− δ)εv

and taking the limit δ → 0 for the affected partial waves. In particular, the extrapolation

to δ = 0 can be avoided all together by taking the average of the results regulated with |δ|
and −|δ|. This symmetric-averaging approach is found to give very accurate results when

changes in the pole term contributions due to the introduction of the regulators are properly
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taken into account.

The remaining part of the calculation involving S pspace
F are individually ultraviolet diver-

gent in the limit n → 4, but these divergences can be analytically isolated, and completely

cancel when the self-mass counter term is included. The ultraviolet finite terms remaining

are evaluated in momentum space, with the “zero-potential” S0 term being a 2-dimensional

integral and the “one-potential” S0V S0 term initially a five-dimensional integral that we

reduce to four dimensions by carrying out one of the Feynman parameter integrals. The

needed Fourier transforms of the bound state wave function ψv are carried out using a mod-

ification of Filon’s method which works for non-linear radial grids commonly used in atomic

structure calculations. The numerical 4-dimensional integrations are carried out with very

high accuracy with the use of the multidimensional integration routine CUHRE, a part of

the CUBA suite of integration programs described in [17]. While not presented here, we note

that accurate methods for the treatment of vacuum polarization are described in Ref. [18],

and can easily be applied to d-states.

III. POINT NUCLEUS HYDROGEN RESULTS

The 1-loop self-energy is given in terms of the dimensionless function F (Zα) as

ESE =
α

π

(Zα)4

n3
F (Zα) mc2. (5)

Results for d3/2 states of hydrogenic ions with Z = 10 − 110 have been reported in Ref. [5],

while those for d5/2 states with Z = 60 − 110 have been given in Ref. [19]. We find good

agreement with these results, and present our 3d and 4d results with Z = 10−100 in Table I.

As mentioned above, difficulties in the precise extrapolation of the partial wave summation

limit our accuracy for individual states. In general, we calculate up to l = 50 which is good

enough to give F (Zα) accurate to four digits past the decimal point in most cases. But for

Z = 10 in 3d and Z = 10 and 20 in 4d, the convergence of the partial wave series is so slow

that even with l going up to 70, it is still difficult to maintain the same level of accuracy.

Specifically, for the 4d results at Z = 20, uncertainties in F (Zα) are close to 1% at about

0.0004. For the 3d and 4d results at Z = 10, however, uncertainties can be two to five times

higher. For these low-Z ions, results in Table I are derived from the known Zα-expansion
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[20]

F (3d3/2) = − 1

20
− 4

3
lnk0(3d) +

[
4

405
ln(Zα)−2 + 0.005551573(2)

]
(Zα)2, (6)

F (3d5/2) =
1

30
− 4

3
lnk0(3d) +

[
4

405
ln(Zα)−2 + 0.027609989(2)

]
(Zα)2, (7)

F (4d3/2) = − 1

20
− 4

3
lnk0(4d) +

[
1

90
ln(Zα)−2 + 0.005585985(2)

]
(Zα)2, (8)

F (4d5/2) =
1

30
− 4

3
lnk0(4d) +

[
1

90
ln(Zα)−2 + 0.031411862(2)

]
(Zα)2, (9)

where the first 10 significant digits of the Bethe logarithm terms are [21]

lnk0(3d) = −0.005 232 148 141, (10)

lnk0(4d) = −0.006 740 938 877. (11)

By fitting the difference between the calculated and the analytic results for Z > 30 to higher-

order Zα-expansion terms, we can extend the above equations to include additional (Zα)4

terms with coefficients given by 0.12(1), 0.07(1), 0.16(1) and 0.09(1) for F (3d3/2), F (3d5/2),

F (4d3/2) and F (4d5/2), respectively. In Figs. 2 and 3, calculated results are compared

with the analytic ones with and without the fitted (Zα)4 terms for F (3d3/2) and F (3d5/2),

respectively. It can be seen that analytic results from the above equations are good up to

about Z = 20 but deviate more and more from the calculated results beyond that point.

The addition of the fitted (Zα)4 terms extends the validity of the Zα-expansions to Z = 40.

Similar behaviors are found for F (4d3/2) and F (4d5/2) and are not shown here. By using

analytic results with the fitted (Zα)4 terms for Z = 10 and 20, results in Table I should be

consistently accurate to the last digit shown.

While accuracies of our d3/2 and d5/2 results at low-Z are severely limited by the slow

convergence of the partial wave series, those of the fine structures d5/2−d3/2 are under much

better control because of strong cancellations between the individual states at high l noted

above, which lead to much faster partial wave convergence. Fine structure results shown in

Table I are valid to all digits. In particular, at Z = 10 and 20, the calculated results are the

same as those from the following analytic formulas derived from previous equations

Ffs(3d) =
1

12
+ 0.022058416(2)(Zα)2, (12)

Ffs(4d) =
1

12
+ 0.025825877(2)(Zα)2, (13)
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where the lowest order term 1/12 is entirely due to the one-loop electron anomalous magnetic

moment. If we carry out a fit to our data to the form A+B(Zα)2 +C(Zα)4, where A and B

are fixed to the values given in the above equations, we find C = −0.050(2) and −0.067(2)

for 3d and 4d states, respectively, consistent with, but more accurate than those from the

difference of fitted coefficients for individual d states shown above. If this is extrapolated

to the case of neutral hydrogen, we predict a very small contribution of -0.004 Hz from the

higher-order terms in the Zα expansion, showing that the expansion to order (Zα)2 is all

that is needed for low-Z ions.

Comparisons between our calculated 3d fine structure results with those from the analytic

formulas are shown in Fig. 4. As in individual d-state results shown in Figs. 2 and 3, analytic

fine structure results including up to the (Zα)2 term are seen to be good only up to about

Z = 20. Unlike individual 3d results, however, when the fitted (Zα)4 term is included,

analytic fine structure results are now in excellent agreement with the calculated results for

the entire Z region. Similar behaviors are found for the 4d fine structure results and are

not shown here. This suggests that higher-order Zα-expansion terms, while important for

individual d states, largely cancel between fine-structure components.

IV. SCREENED CALCULATIONS

While radiative corrections in few-electron ions can be treated by interpolating or scaling

the hydrogenic results, as is done for example in Ref. [22], for many-electron systems such as

lithiumlike, sodiumlike and copperlike ions, it is much better to start with a more realistic

potential so as to build in the bulk of the screening in lowest order. This approach has been

used by Blundell [23] in treating these isoelectronic sequences using a screened core-Hartree

potential. Here we use a slightly different model potential, the Kohn-Sham potential [24],

defined by

VKS(r) = VC(r) + α
∫

dr′
1

r>

ρt(r
′) − 2

3

[
81

32π2
rρt(r)

]1/3
α

r
, (14)

where

ρt(r) = g2
v(r) + f 2

v (r) +
∑
a

(2ja + 1)
[
g2

a(r) + f 2
a (r)

]
. (15)

Here VC(r) is the nuclear Coulomb field, including finite nuclear size using a Fermi distribu-

tion, and g(r) and f(r) are the upper and lower radial components of Dirac wave functions,
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determined self-consistently. For lithiumlike ions, v = 2s and the sum is over a heliumlike

core. For sodiumlike ions, v = 3s and the sum is over a neonlike core. Finally for copperlike

ions, v = 4s and the sum is over a nickellike core. These potentials give results similar to

the Hartree-Fock potential, which we do not use because its nonlocality makes it difficult to

incorporate into a complete QED framework such as the S-matrix theory. The factor 2/3

in the Kohn-Sham potential can take other values: for example, 1 for the Slater potential

and 0 for the Hartree potential. However, we have invariably found good agreement with

experiment when using the Kohn-Sham potential and would recommend that it be generally

adopted as a standard for the many-electron problem. While a great advantage of restricting

oneself to the hydrogenic self energy is that it is a natural standard, it can only be applied to

ions with many electrons through interpolating/scaling procedures or perturbation theory,

which become more and more problematic as the number of electrons in the ion increases.

We present, in Tables II, III and IV, results for n = 2 lithiumlike ions, n = 3 sodiumlike

ions, and n = 4 copperlike ions, respectively. While our interest is in d-states, results for

the s- and p-states are also shown for completeness. In Fig. 5, our screened ns self-energies

are compared with the hydrogenic results of Mohr and coworkers [5, 6]. It can be seen that

hydrogenic results of F (Zα) for 2s, 3s and 4s are very similar throughout the Z range, but

such is not the case when screening corrections are included. In fact, with more and more

electrons in the ion, the screened F (Zα) functions for the ns states deviate more and more

from the hydrogenic results. Similar comparisons are made for the np1/2, np3/2, nd3/2, and

nd5/2 results in Figs. 6 – 9, respectively. Except for np1/2, all screened self-energies are found

to be quite different from the corresponding hydrogenic results.

V. DISCUSSION

While little data involving the nd states in high-Z sodiumlike and copperlike systems

are available, a high-precision experiment on transition energies involving the 4d state for

copperlike ions has recently been carried out [14], and we discuss these measurements in some

detail so as to show the role of radiative corrections in screened potentials for this case. The

transition is 3d104p (J = 1/2) − 3d104d (J = 3/2), and the energies for Bi54+, Th61+, and

U63+ have been determined to be 366.72(2), 491.94(10), and 535.15(5) eV, respectively. It

is quite straightforward to carry out relativistic many-body perturbation theory (MBPT)
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calculations [25] for these transitions using, for consistency, a Kohn-Sham potential. The

results of a calculation including Coulomb interactions through third order, instantaneous

Breit and Breit-Coulomb interactions, and the effect of retardation on the Breit interaction

are 367.21, 492.42,and 535.69 eV. The difference between experiment and this “structure”

calculation implies QED effects of -0.24, -0.48, and -0.54 eV. With vacuum polarizations

estimated to be 0.09, 0.19 and 0.24 eV from expectation values of the Uehling potential

calculated with Kohn-Sham wave functions, the deduced self-energy corrections are given

by -0.33, -0.67 and -0.78 eV. Possible errors from the combined theoretical and experimental

uncertainties are likely to be around 10% to 20%. Were one to use hydrogenic values for the

Lamb shift, one would get -0.79, -1.37 and -1.59 eV, which are twice as big as the deduced

values, indicating the presence of a significant level of screening. Likewise, interpolating

the hydrogenic values to Zeff = Z − 28 = 55, 62 and 64 for copperlike Bi54+, Th61+, and

U63+, respectively, leads to over corrected results of -0.06, -0.12 and -0.14 eV which are too

small by a factor of five. If we instead use the Kohn-Sham values from Table III, we get the

much more reasonable set of values -0.40, -0.74, and -0.88 eV. Thus this relatively simple

procedure gives self-energy results which are consistent with experiment to within 20% and

are almost within the expected error bars of the deduced self-energies.

To explain the remaining difference involves a number of rather complex issues which

we have discussed elsewhere before [26]. They involve the direct evaluation of screening

corrections to the one-loop self-energy and vacuum polarization diagrams, the inclusion of

recoil corrections and the correct treatment of “two-photon” Feynman diagrams beyond the

dominant two-photon exchange graphs which have been included in MBPT. The Wichmann-

Kroll corrections to the vacuum polarization, though expected to be small, have to be

evaluated also. In the case of 2s − 2p transitions in lithiumlike Bi80+, we have shown that

the Kohn-Sham potential is a much better starting point than the Coulomb potential for

treating these small corrections [26]. We expect the same to be true here, especially since

there are significantly more electrons in copperlike than in lithiumlike ions. We are presently

extending the S-matrix methods developed for lithiumlike bismuth to the sodiumlike case,

and the same methods should also be applicable to copperlike ions.

9



Acknowledgments

The work of J.S. was supported in part by NSF Grant No. PHY-0451842. The work

of K.T.C. was performed under the auspices of the U.S. Department of Energy by the

University of California, Lawrence Livermore National Laboratory under Contract No. W-

7405-ENG-48.

[1] P.J. Mohr, in Atomic, Molecular and Optical Physics Handbook, Ed. G.W.F. Drake, (AIP

Press, Woodbury, NY 1996).

[2] G.E. Brown, J.S. Langer, and G.W. Schaefer, Proc. R. Soc. London, Ser. A 251, 92 (1959).

[3] A.M. Desiderio and W.R. Johnson, Phys. Rev. A 3, 1267 (1971).

[4] P.J. Mohr, Ann. Phys. (N.Y.) 88, 26 (1974).

[5] P.J. Mohr and Y.-K. Kim, Phys. Rev. A 45, 2727 (1992).

[6] P.J. Mohr, Phys. Rev. A 46, 4421 (1992).

[7] P.J. Mohr and G. Soff, Phys. Rev. A47, 1111 (1993).

[8] N.J. Snyderman, Ann. Phys. (N.Y.) 211, 43 (1991).

[9] K.T. Cheng, W.R. Johnson, and J. Sapirstein, Phys. Rev. A47, 1817 (1993).

[10] S.A. Blundell and N.J. Snyderman, Phys. Rev. A 44, R1427 (1991).

[11] H. Persson, I. Lindgren and S. Salomonson, Phys. Scr. T 46, 125 (1993).

[12] V.A. Yerokhin and V.M Shabaev, Phys. Rev. A 60, 800 (1999).

[13] I. Goidenko, L. Labzowsky, M. Tokman and P. Pyykko, Phys. Rev. A 59, 2707 (1999).

[14] E. Trabert, P. Beiersdorfer, K.B. Fournier, and M.H. Chen, Can. J. Phys. 82, 1 (2004).

[15] G.E. Brown and G.W. Schaefer, Proc. Roy. Soc A 233, 527 (1956).

[16] S.A. Blundell, Phys. Rev. A 46, 3762 (1992).

[17] T. Hahn, Comput. Phys. Commun. 168, 78 (2005).

[18] J. Sapirstein and K.T. Cheng, Phys. Rev. A 68, 042111 (2003).

[19] Eric-Olivier Le Bigot, Paul Indelicato, and Peter J. Mohr, Phys. Rev. A 64, 052508 (2001).

[20] Eric-Olivier Le Bigot, Ulrich D. Jentschura, Peter J. Mohr, Paul Indelicato, and Gerhard Soff,

Phys. Rev. A 68, 042101 (2003).

[21] S.P. Goldman and G.W.F. Drake, Phys. Rev. A 61, 052513 (2000).

10



[22] Y.-K. Kim, D.H. Baik, P. Indelicato, and J.P. Desclaux, Phys. Rev. A 44, 148 (1991).

[23] S.A. Blundell, Phys. Rev. A 74, 1790 (1993).

[24] R. Cowan, The Theory of Atomic Spectra, Chapter 7, Section 7-11.

[25] W.R. Johnson, S.A. Blundell, and J. Sapirstein, Phys. Rev. A 42, 1087 (1990).

[26] J. Sapirstein and K.T. Cheng, Phys. Rev. A 64, 022502 (2001).

11



TABLE I: F (Zα) for the hydrogenic 3d and 4d states and their fine structure (f.s.) splittings.

Z 3d3/2 3d5/2 f.s.(3d) 4d3/2 4d5/2 f.s.(4d)

10 -0.0427 0.0407 0.0834 -0.0407 0.0428 0.0835

20 -0.0420 0.0417 0.0838 -0.0399 0.0439 0.0839

30 -0.0410 0.0432 0.0843 -0.0387 0.0457 0.0844

40 -0.0396 0.0452 0.0848 -0.0371 0.0479 0.0850

50 -0.0378 0.0475 0.0853 -0.0348 0.0507 0.0855

60 -0.0353 0.0503 0.0857 -0.0318 0.0541 0.0858

70 -0.0321 0.0536 0.0857 -0.0277 0.0580 0.0856

80 -0.0279 0.0572 0.0851 -0.0222 0.0624 0.0846

90 -0.0225 0.0612 0.0837 -0.0149 0.0673 0.0822

100 -0.0154 0.0654 0.0808 -0.0053 0.0727 0.0779

TABLE II: F (Zα) for the 2s1/2, 2p1/2 and 2p3/2 states of lithiumlike ions with Z = 10 − 100.

Z 2s1/2 2p1/2 2p3/2

10 3.4768 -0.0978 0.0365

20 2.9787 -0.0890 0.0903

30 2.5479 -0.0662 0.1221

40 2.2626 -0.0368 0.1484

50 2.0820 -0.0009 0.1730

60 1.9796 0.0427 0.1971

70 1.9423 0.0971 0.2211

80 1.9673 0.1680 0.2451

83 1.9877 0.1938 0.2523

90 2.0607 0.2657 0.2690

92 2.0889 0.2900 0.2738

100 2.2423 0.4110 0.2925
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TABLE III: F (Zα) for the 3s1/2, 3p1/2, 3p3/2, 3d3/2 and 3d5/2 states of sodiumlike ions with

Z = 20 − 100.

Z 3s1/2 3p1/2 3p3/2 3d3/2 3d5/2

20 1.4435 -0.0431 0.0317 -0.0109 -0.0003

30 1.6845 -0.0403 0.0721 -0.0201 0.0061

40 1.6980 -0.0193 0.1070 -0.0242 0.0130

50 1.6742 0.0127 0.1388 -0.0260 0.0190

60 1.6616 0.0549 0.1694 -0.0263 0.0244

70 1.6767 0.1092 0.1997 -0.0255 0.0294

80 1.7296 0.1807 0.2304 -0.0235 0.0342

83 1.7545 0.2067 0.2397 -0.0227 0.0356

90 1.8313 0.2787 0.2616 -0.0203 0.0389

92 1.8588 0.3029 0.2679 -0.0195 0.0399

100 2.0006 0.4222 0.2934 -0.0157 0.0436

TABLE IV: F (Zα) for the 4s1/2, 4p1/2, 4p3/2, 4d3/2 and 4d5/2 states of copperlike ions with

Z = 40 − 100.

Z 4s1/2 4p1/2 4p3/2 4d3/2 4d5/2

40 0.6045 -0.0070 0.0334 -0.0070 0.0019

50 0.8338 0.0058 0.0649 -0.0117 0.0060

60 0.9758 0.0320 0.0964 -0.0143 0.0109

70 1.0859 0.0711 0.1279 -0.0152 0.0159

80 1.1938 0.1259 0.1597 -0.0146 0.0210

83 1.2288 0.1462 0.1694 -0.0142 0.0226

90 1.3193 0.2030 0.1922 -0.0125 0.0263

92 1.3481 0.2221 0.1988 -0.0119 0.0273

100 1.4829 0.3164 0.2253 -0.0086 0.0315
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FIG. 1: The expansion of the electron self-energy into zero-, one- and two-potential terms. Single

and double lines refer to free and bound electrons, respectively. Dashed lines end with a cross refer

to interactions with the potential V (r).
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FIG. 2: Comparisons between the analytic and calculated hydrogenic results of F (3d3/2).
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FIG. 3: Comparisons between the analytic and calculated hydrogenic results of F (3d5/2).
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FIG. 4: Comparisons between the analytic and calculated hydrogenic fine structure results of

F (3d).

15



0

1

2

3

4

5

0 20 40 60 80 100

F
(Z

α )

Z

Cu-like 4s

Na-like 3s

Li-like 2s

H-like 2s, 3s, 4s

FIG. 5: Comparisons between the hydrogenic and screened self-energy functions F (Zα) for the

ns states. Dotted, dashed and solid lines without symbols are hydrogenic 2s, 3s and 4s results,

respectively. Solid lines with symbols are Kohn-Sham results.
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FIG. 6: Comparisons between the hydrogenic and screened self-energy functions F (Zα) for the

np1/2 states. Dotted, dashed and solid lines without symbols are hydrogenic 2p1/2, 3p1/2 and

4p1/2 results, respectively. Solid lines with circles, inverted triangles and triangles are Li-like 2p1/2,

Na-like 3p1/2 and Cu-like 4p1/2 Kohn-Sham results, respectively.
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FIG. 7: Comparisons between the hydrogenic and screened Kohn-Sham self-energy functions F (Zα)

for the np3/2 states.
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FIG. 8: Comparisons between the hydrogenic and screened Kohn-Sham self-energy functions F (Zα)

for the nd3/2 states.
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FIG. 9: Comparisons between the hydrogenic and screened Kohn-Sham self-energy functions F (Zα)

for the nd5/2 states.
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